Counterexamples to Strichartz estimates for the wave equation in domains

نویسنده

  • Oana Ivanovici
چکیده

Let Ω be the upper half plane {(x, y) ∈ R, x > 0, y ∈ R}. Define the Laplacian on Ω to be ∆D = ∂ 2 x + (1 + x)∂ 2 y , together with Dirichlet boundary conditions on ∂Ω: one may easily see that Ω, with the metric inherited from ∆D, is a strictly convex domain. We shall prove that, in such a domain Ω, Strichartz estimates for the wave equation suffer losses when compared to the usual case Ω = R, at least for a subset of the usual range of indices. Our construction is microlocal in nature; in [7] we prove that the same result holds true for any regular domain Ω ⊂ R, d = 2, 3, 4, provided there exists a point in T ∗∂Ω where the boundary is microlocally strictly convex. Definition 1.1. Let q, r ≥ 2, (q, r, α) 6= (2,∞, 1). A pair (q, r) is called α-admissible if

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to the Strichartz inequalities for the wave equation in domains II

In this paper we consider a smooth and bounded domain Ω ⊂ Rd of dimension d ≥ 2 with smooth boundary ∂Ω and we construct sequences of solutions to the wave equation with Dirichlet boundary conditions which contradict the Strichartz estimates of the free space, providing losses of derivatives at least for a subset of the usual range of indices. This is due to micro-local phenomena such as causti...

متن کامل

Counterexamples to Strichartz inequalities for the wave equation in domains II

1 Introduction Let Ω be a smooth manifold of dimension d ≥ 2 with C ∞ boundary ∂Ω, equipped with a Riemannian metric g. Let ∆ g be the Laplace-Beltrami operator associated to g on Ω, acting on L 2 (Ω) with Dirichlet boundary condition. Let 0 < T < ∞ and consider the wave equation with Dirichlet boundary conditions:    (∂ 2 t − ∆ g)u = 0 on Ω × [0, T ], u| t=0 = u 0 , ∂ t u| t=0 = u 1 , u| ∂Ω...

متن کامل

Strichartz Estimates for the Wave Equation on Flat Cones

We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius ρ > 0, the manifold R+ × ( R / 2πρZ ) equipped with the metric g(r, θ) = dr2 + r2 dθ2. Using explicit representations of the solution operator in regions related to flat wave propagation and diffraction by the cone point, we prove dispersive estimates and hence scale invariant Strichartz...

متن کامل

Counterexamples to Strichartz Estimates for the Magnetic Schrödinger Equation

In space dimension n ≥ 3, we consider the magnetic Schrödinger Hamiltonian H = −(∇− iA(x)) and the corresponding Schrödinger equation i∂tu + Hu = 0. We show some explicit examples of potentials A, with less than Coulomb decay, for which any solution of this equation cannot satisfy Strichartz estimates, in the whole range of Schrödinger admissibility.

متن کامل

9 J ul 2 01 7 DECAY ESTIMATES FOR WAVE EQUATION WITH A POTENTIAL ON EXTERIOR DOMAINS

The purpose of the present paper is to establish the local energy decay estimates and dispersive estimates for 3-dimensional wave equation with a potential to the initial-boundary value problem on exterior domains. The geometrical assumptions on domains are rather general, for example non-trapping condition is not imposed in the local energy decay result. As a by-product, Strichartz estimates i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009